shell bypass 403
"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.RTTSampler = exports.MonitorInterval = exports.RTTPinger = exports.Monitor = exports.ServerMonitoringMode = void 0;
const timers_1 = require("timers");
const bson_1 = require("../bson");
const connect_1 = require("../cmap/connect");
const client_metadata_1 = require("../cmap/handshake/client_metadata");
const constants_1 = require("../constants");
const error_1 = require("../error");
const mongo_logger_1 = require("../mongo_logger");
const mongo_types_1 = require("../mongo_types");
const utils_1 = require("../utils");
const common_1 = require("./common");
const events_1 = require("./events");
const server_1 = require("./server");
/** @internal */
const kServer = Symbol('server');
/** @internal */
const kMonitorId = Symbol('monitorId');
/** @internal */
const kCancellationToken = Symbol('cancellationToken');
const STATE_IDLE = 'idle';
const STATE_MONITORING = 'monitoring';
const stateTransition = (0, utils_1.makeStateMachine)({
[common_1.STATE_CLOSING]: [common_1.STATE_CLOSING, STATE_IDLE, common_1.STATE_CLOSED],
[common_1.STATE_CLOSED]: [common_1.STATE_CLOSED, STATE_MONITORING],
[STATE_IDLE]: [STATE_IDLE, STATE_MONITORING, common_1.STATE_CLOSING],
[STATE_MONITORING]: [STATE_MONITORING, STATE_IDLE, common_1.STATE_CLOSING]
});
const INVALID_REQUEST_CHECK_STATES = new Set([common_1.STATE_CLOSING, common_1.STATE_CLOSED, STATE_MONITORING]);
function isInCloseState(monitor) {
return monitor.s.state === common_1.STATE_CLOSED || monitor.s.state === common_1.STATE_CLOSING;
}
/** @public */
exports.ServerMonitoringMode = Object.freeze({
auto: 'auto',
poll: 'poll',
stream: 'stream'
});
/** @internal */
class Monitor extends mongo_types_1.TypedEventEmitter {
constructor(server, options) {
super();
/** @internal */
this.component = mongo_logger_1.MongoLoggableComponent.TOPOLOGY;
this[kServer] = server;
this.connection = null;
this[kCancellationToken] = new mongo_types_1.CancellationToken();
this[kCancellationToken].setMaxListeners(Infinity);
this[kMonitorId] = undefined;
this.s = {
state: common_1.STATE_CLOSED
};
this.address = server.description.address;
this.options = Object.freeze({
connectTimeoutMS: options.connectTimeoutMS ?? 10000,
heartbeatFrequencyMS: options.heartbeatFrequencyMS ?? 10000,
minHeartbeatFrequencyMS: options.minHeartbeatFrequencyMS ?? 500,
serverMonitoringMode: options.serverMonitoringMode
});
this.isRunningInFaasEnv = (0, client_metadata_1.getFAASEnv)() != null;
this.mongoLogger = this[kServer].topology.client?.mongoLogger;
this.rttSampler = new RTTSampler(10);
const cancellationToken = this[kCancellationToken];
// TODO: refactor this to pull it directly from the pool, requires new ConnectionPool integration
const connectOptions = {
id: '<monitor>',
generation: server.pool.generation,
cancellationToken,
hostAddress: server.description.hostAddress,
...options,
// force BSON serialization options
raw: false,
useBigInt64: false,
promoteLongs: true,
promoteValues: true,
promoteBuffers: true
};
// ensure no authentication is used for monitoring
delete connectOptions.credentials;
if (connectOptions.autoEncrypter) {
delete connectOptions.autoEncrypter;
}
this.connectOptions = Object.freeze(connectOptions);
}
connect() {
if (this.s.state !== common_1.STATE_CLOSED) {
return;
}
// start
const heartbeatFrequencyMS = this.options.heartbeatFrequencyMS;
const minHeartbeatFrequencyMS = this.options.minHeartbeatFrequencyMS;
this[kMonitorId] = new MonitorInterval(monitorServer(this), {
heartbeatFrequencyMS: heartbeatFrequencyMS,
minHeartbeatFrequencyMS: minHeartbeatFrequencyMS,
immediate: true
});
}
requestCheck() {
if (INVALID_REQUEST_CHECK_STATES.has(this.s.state)) {
return;
}
this[kMonitorId]?.wake();
}
reset() {
const topologyVersion = this[kServer].description.topologyVersion;
if (isInCloseState(this) || topologyVersion == null) {
return;
}
stateTransition(this, common_1.STATE_CLOSING);
resetMonitorState(this);
// restart monitor
stateTransition(this, STATE_IDLE);
// restart monitoring
const heartbeatFrequencyMS = this.options.heartbeatFrequencyMS;
const minHeartbeatFrequencyMS = this.options.minHeartbeatFrequencyMS;
this[kMonitorId] = new MonitorInterval(monitorServer(this), {
heartbeatFrequencyMS: heartbeatFrequencyMS,
minHeartbeatFrequencyMS: minHeartbeatFrequencyMS
});
}
close() {
if (isInCloseState(this)) {
return;
}
stateTransition(this, common_1.STATE_CLOSING);
resetMonitorState(this);
// close monitor
this.emit('close');
stateTransition(this, common_1.STATE_CLOSED);
}
get roundTripTime() {
return this.rttSampler.average();
}
get minRoundTripTime() {
return this.rttSampler.min();
}
get latestRtt() {
return this.rttSampler.last;
}
addRttSample(rtt) {
this.rttSampler.addSample(rtt);
}
clearRttSamples() {
this.rttSampler.clear();
}
}
exports.Monitor = Monitor;
function resetMonitorState(monitor) {
monitor[kMonitorId]?.stop();
monitor[kMonitorId] = undefined;
monitor.rttPinger?.close();
monitor.rttPinger = undefined;
monitor[kCancellationToken].emit('cancel');
monitor.connection?.destroy();
monitor.connection = null;
monitor.clearRttSamples();
}
function useStreamingProtocol(monitor, topologyVersion) {
// If we have no topology version we always poll no matter
// what the user provided, since the server does not support
// the streaming protocol.
if (topologyVersion == null)
return false;
const serverMonitoringMode = monitor.options.serverMonitoringMode;
if (serverMonitoringMode === exports.ServerMonitoringMode.poll)
return false;
if (serverMonitoringMode === exports.ServerMonitoringMode.stream)
return true;
// If we are in auto mode, we need to figure out if we're in a FaaS
// environment or not and choose the appropriate mode.
if (monitor.isRunningInFaasEnv)
return false;
return true;
}
function checkServer(monitor, callback) {
let start;
let awaited;
const topologyVersion = monitor[kServer].description.topologyVersion;
const isAwaitable = useStreamingProtocol(monitor, topologyVersion);
monitor.emitAndLogHeartbeat(server_1.Server.SERVER_HEARTBEAT_STARTED, monitor[kServer].topology.s.id, undefined, new events_1.ServerHeartbeatStartedEvent(monitor.address, isAwaitable));
function onHeartbeatFailed(err) {
monitor.connection?.destroy();
monitor.connection = null;
monitor.emitAndLogHeartbeat(server_1.Server.SERVER_HEARTBEAT_FAILED, monitor[kServer].topology.s.id, undefined, new events_1.ServerHeartbeatFailedEvent(monitor.address, (0, utils_1.calculateDurationInMs)(start), err, awaited));
const error = !(err instanceof error_1.MongoError)
? new error_1.MongoError(error_1.MongoError.buildErrorMessage(err), { cause: err })
: err;
error.addErrorLabel(error_1.MongoErrorLabel.ResetPool);
if (error instanceof error_1.MongoNetworkTimeoutError) {
error.addErrorLabel(error_1.MongoErrorLabel.InterruptInUseConnections);
}
monitor.emit('resetServer', error);
callback(err);
}
function onHeartbeatSucceeded(hello) {
if (!('isWritablePrimary' in hello)) {
// Provide hello-style response document.
hello.isWritablePrimary = hello[constants_1.LEGACY_HELLO_COMMAND];
}
// NOTE: here we use the latestRtt as this measurement corresponds with the value
// obtained for this successful heartbeat, if there is no latestRtt, then we calculate the
// duration
const duration = isAwaitable && monitor.rttPinger
? (monitor.rttPinger.latestRtt ?? (0, utils_1.calculateDurationInMs)(start))
: (0, utils_1.calculateDurationInMs)(start);
monitor.addRttSample(duration);
monitor.emitAndLogHeartbeat(server_1.Server.SERVER_HEARTBEAT_SUCCEEDED, monitor[kServer].topology.s.id, hello.connectionId, new events_1.ServerHeartbeatSucceededEvent(monitor.address, duration, hello, isAwaitable));
if (isAwaitable) {
// If we are using the streaming protocol then we immediately issue another 'started'
// event, otherwise the "check" is complete and return to the main monitor loop
monitor.emitAndLogHeartbeat(server_1.Server.SERVER_HEARTBEAT_STARTED, monitor[kServer].topology.s.id, undefined, new events_1.ServerHeartbeatStartedEvent(monitor.address, true));
// We have not actually sent an outgoing handshake, but when we get the next response we
// want the duration to reflect the time since we last heard from the server
start = (0, utils_1.now)();
}
else {
monitor.rttPinger?.close();
monitor.rttPinger = undefined;
callback(undefined, hello);
}
}
const { connection } = monitor;
if (connection && !connection.closed) {
const { serverApi, helloOk } = connection;
const connectTimeoutMS = monitor.options.connectTimeoutMS;
const maxAwaitTimeMS = monitor.options.heartbeatFrequencyMS;
const cmd = {
[serverApi?.version || helloOk ? 'hello' : constants_1.LEGACY_HELLO_COMMAND]: 1,
...(isAwaitable && topologyVersion
? { maxAwaitTimeMS, topologyVersion: makeTopologyVersion(topologyVersion) }
: {})
};
const options = isAwaitable
? {
socketTimeoutMS: connectTimeoutMS ? connectTimeoutMS + maxAwaitTimeMS : 0,
exhaustAllowed: true
}
: { socketTimeoutMS: connectTimeoutMS };
if (isAwaitable && monitor.rttPinger == null) {
monitor.rttPinger = new RTTPinger(monitor);
}
// Record new start time before sending handshake
start = (0, utils_1.now)();
if (isAwaitable) {
awaited = true;
return connection.exhaustCommand((0, utils_1.ns)('admin.$cmd'), cmd, options, (error, hello) => {
if (error)
return onHeartbeatFailed(error);
return onHeartbeatSucceeded(hello);
});
}
awaited = false;
connection
.command((0, utils_1.ns)('admin.$cmd'), cmd, options)
.then(onHeartbeatSucceeded, onHeartbeatFailed);
return;
}
// connecting does an implicit `hello`
(async () => {
const socket = await (0, connect_1.makeSocket)(monitor.connectOptions);
const connection = (0, connect_1.makeConnection)(monitor.connectOptions, socket);
// The start time is after socket creation but before the handshake
start = (0, utils_1.now)();
try {
await (0, connect_1.performInitialHandshake)(connection, monitor.connectOptions);
return connection;
}
catch (error) {
connection.destroy();
throw error;
}
})().then(connection => {
if (isInCloseState(monitor)) {
connection.destroy();
return;
}
const duration = (0, utils_1.calculateDurationInMs)(start);
monitor.addRttSample(duration);
monitor.connection = connection;
monitor.emitAndLogHeartbeat(server_1.Server.SERVER_HEARTBEAT_SUCCEEDED, monitor[kServer].topology.s.id, connection.hello?.connectionId, new events_1.ServerHeartbeatSucceededEvent(monitor.address, duration, connection.hello, useStreamingProtocol(monitor, connection.hello?.topologyVersion)));
callback(undefined, connection.hello);
}, error => {
monitor.connection = null;
awaited = false;
onHeartbeatFailed(error);
});
}
function monitorServer(monitor) {
return (callback) => {
if (monitor.s.state === STATE_MONITORING) {
process.nextTick(callback);
return;
}
stateTransition(monitor, STATE_MONITORING);
function done() {
if (!isInCloseState(monitor)) {
stateTransition(monitor, STATE_IDLE);
}
callback();
}
checkServer(monitor, (err, hello) => {
if (err) {
// otherwise an error occurred on initial discovery, also bail
if (monitor[kServer].description.type === common_1.ServerType.Unknown) {
return done();
}
}
// if the check indicates streaming is supported, immediately reschedule monitoring
if (useStreamingProtocol(monitor, hello?.topologyVersion)) {
(0, timers_1.setTimeout)(() => {
if (!isInCloseState(monitor)) {
monitor[kMonitorId]?.wake();
}
}, 0);
}
done();
});
};
}
function makeTopologyVersion(tv) {
return {
processId: tv.processId,
// tests mock counter as just number, but in a real situation counter should always be a Long
// TODO(NODE-2674): Preserve int64 sent from MongoDB
counter: bson_1.Long.isLong(tv.counter) ? tv.counter : bson_1.Long.fromNumber(tv.counter)
};
}
/** @internal */
class RTTPinger {
constructor(monitor) {
this.connection = undefined;
this[kCancellationToken] = monitor[kCancellationToken];
this.closed = false;
this.monitor = monitor;
this.latestRtt = monitor.latestRtt ?? undefined;
const heartbeatFrequencyMS = monitor.options.heartbeatFrequencyMS;
this[kMonitorId] = (0, timers_1.setTimeout)(() => this.measureRoundTripTime(), heartbeatFrequencyMS);
}
get roundTripTime() {
return this.monitor.roundTripTime;
}
get minRoundTripTime() {
return this.monitor.minRoundTripTime;
}
close() {
this.closed = true;
(0, timers_1.clearTimeout)(this[kMonitorId]);
this.connection?.destroy();
this.connection = undefined;
}
measureAndReschedule(start, conn) {
if (this.closed) {
conn?.destroy();
return;
}
if (this.connection == null) {
this.connection = conn;
}
this.latestRtt = (0, utils_1.calculateDurationInMs)(start);
this[kMonitorId] = (0, timers_1.setTimeout)(() => this.measureRoundTripTime(), this.monitor.options.heartbeatFrequencyMS);
}
measureRoundTripTime() {
const start = (0, utils_1.now)();
if (this.closed) {
return;
}
const connection = this.connection;
if (connection == null) {
(0, connect_1.connect)(this.monitor.connectOptions).then(connection => {
this.measureAndReschedule(start, connection);
}, () => {
this.connection = undefined;
});
return;
}
const commandName = connection.serverApi?.version || connection.helloOk ? 'hello' : constants_1.LEGACY_HELLO_COMMAND;
connection.command((0, utils_1.ns)('admin.$cmd'), { [commandName]: 1 }, undefined).then(() => this.measureAndReschedule(start), () => {
this.connection?.destroy();
this.connection = undefined;
return;
});
}
}
exports.RTTPinger = RTTPinger;
/**
* @internal
*/
class MonitorInterval {
constructor(fn, options = {}) {
this.isExpeditedCallToFnScheduled = false;
this.stopped = false;
this.isExecutionInProgress = false;
this.hasExecutedOnce = false;
this._executeAndReschedule = () => {
if (this.stopped)
return;
if (this.timerId) {
(0, timers_1.clearTimeout)(this.timerId);
}
this.isExpeditedCallToFnScheduled = false;
this.isExecutionInProgress = true;
this.fn(() => {
this.lastExecutionEnded = (0, utils_1.now)();
this.isExecutionInProgress = false;
this._reschedule(this.heartbeatFrequencyMS);
});
};
this.fn = fn;
this.lastExecutionEnded = -Infinity;
this.heartbeatFrequencyMS = options.heartbeatFrequencyMS ?? 1000;
this.minHeartbeatFrequencyMS = options.minHeartbeatFrequencyMS ?? 500;
if (options.immediate) {
this._executeAndReschedule();
}
else {
this._reschedule(undefined);
}
}
wake() {
const currentTime = (0, utils_1.now)();
const timeSinceLastCall = currentTime - this.lastExecutionEnded;
// TODO(NODE-4674): Add error handling and logging to the monitor
if (timeSinceLastCall < 0) {
return this._executeAndReschedule();
}
if (this.isExecutionInProgress) {
return;
}
// debounce multiple calls to wake within the `minInterval`
if (this.isExpeditedCallToFnScheduled) {
return;
}
// reschedule a call as soon as possible, ensuring the call never happens
// faster than the `minInterval`
if (timeSinceLastCall < this.minHeartbeatFrequencyMS) {
this.isExpeditedCallToFnScheduled = true;
this._reschedule(this.minHeartbeatFrequencyMS - timeSinceLastCall);
return;
}
this._executeAndReschedule();
}
stop() {
this.stopped = true;
if (this.timerId) {
(0, timers_1.clearTimeout)(this.timerId);
this.timerId = undefined;
}
this.lastExecutionEnded = -Infinity;
this.isExpeditedCallToFnScheduled = false;
}
toString() {
return JSON.stringify(this);
}
toJSON() {
const currentTime = (0, utils_1.now)();
const timeSinceLastCall = currentTime - this.lastExecutionEnded;
return {
timerId: this.timerId != null ? 'set' : 'cleared',
lastCallTime: this.lastExecutionEnded,
isExpeditedCheckScheduled: this.isExpeditedCallToFnScheduled,
stopped: this.stopped,
heartbeatFrequencyMS: this.heartbeatFrequencyMS,
minHeartbeatFrequencyMS: this.minHeartbeatFrequencyMS,
currentTime,
timeSinceLastCall
};
}
_reschedule(ms) {
if (this.stopped)
return;
if (this.timerId) {
(0, timers_1.clearTimeout)(this.timerId);
}
this.timerId = (0, timers_1.setTimeout)(this._executeAndReschedule, ms || this.heartbeatFrequencyMS);
}
}
exports.MonitorInterval = MonitorInterval;
/** @internal
* This class implements the RTT sampling logic specified for [CSOT](https://github.com/mongodb/specifications/blob/bbb335e60cd7ea1e0f7cd9a9443cb95fc9d3b64d/source/client-side-operations-timeout/client-side-operations-timeout.md#drivers-use-minimum-rtt-to-short-circuit-operations)
*
* This is implemented as a [circular buffer](https://en.wikipedia.org/wiki/Circular_buffer) keeping
* the most recent `windowSize` samples
* */
class RTTSampler {
constructor(windowSize = 10) {
this.rttSamples = new Float64Array(windowSize);
this.length = 0;
this.writeIndex = 0;
}
/**
* Adds an rtt sample to the end of the circular buffer
* When `windowSize` samples have been collected, `addSample` overwrites the least recently added
* sample
*/
addSample(sample) {
this.rttSamples[this.writeIndex++] = sample;
if (this.length < this.rttSamples.length) {
this.length++;
}
this.writeIndex %= this.rttSamples.length;
}
/**
* When \< 2 samples have been collected, returns 0
* Otherwise computes the minimum value samples contained in the buffer
*/
min() {
if (this.length < 2)
return 0;
let min = this.rttSamples[0];
for (let i = 1; i < this.length; i++) {
if (this.rttSamples[i] < min)
min = this.rttSamples[i];
}
return min;
}
/**
* Returns mean of samples contained in the buffer
*/
average() {
if (this.length === 0)
return 0;
let sum = 0;
for (let i = 0; i < this.length; i++) {
sum += this.rttSamples[i];
}
return sum / this.length;
}
/**
* Returns most recently inserted element in the buffer
* Returns null if the buffer is empty
* */
get last() {
if (this.length === 0)
return null;
return this.rttSamples[this.writeIndex === 0 ? this.length - 1 : this.writeIndex - 1];
}
/**
* Clear the buffer
* NOTE: this does not overwrite the data held in the internal array, just the pointers into
* this array
*/
clear() {
this.length = 0;
this.writeIndex = 0;
}
}
exports.RTTSampler = RTTSampler;
//# sourceMappingURL=monitor.js.map